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We Cons ider it grox\up of 1 ..11,weptible~ ikvidual s who rc exixisd t.%, tn

contagious disetises. 'Mei prog.s.':; of' tile' ''11deilic IM ~ng til hoildividual; It,

modeled by a stochastic rocess: X (t) (X (t xI * . t) n (0,'.

The coluponent-i of X 1( t) decwribe the numlber of In fective individual... With t ht

respective disease at, t inc t..

For a class~ of cr1 dem ic raodel :ituwied nyilmictr ic n;-dImrn;-IonnI s~imple

epid-mics [Billard , Lacn-Vo and Liuigberg. ( 10j') We' C::t'nblis:h ,With a szitalIt'e

standartization. the asymnptotic norndt convergenzce ofI X t u it:, n fo r

t in (0, .)
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1. Introduction and Stnry.

In a simple epidemic situatiou we assume that a population of

susceptible individuals Qsusceit I es) is eAposed only to one contagious

disease (disease) Lt ialey (1975)I. However, frequently susceptibles are

exposed simultaneously to more thalt one disea.se, is is tile case with

different types of flu. In this paper we consider a population of suscept-

ibles exposed to In diseases. i'e .ay that tile population of susceptibles

undergoes an m-dimensional simple epidemic if th, following five assumptions

hold.

(1.1) Each susceptible contracts at most one disease.

(1.2) Once a susceptible contracts disease r, r -1, . . n he remains

contagious during tile duration of the epidemic.

(1.3) An infective individual (infective) with disease r, r = 1, ..... II

can transmit only that disease.

(1.4) Individuals neither join nor do they depart from the population, and

(1.5) At each point in time at most one susceptible contracts a disease.

Let T denote tile first time we have at least one infective with each ofo

the various diseases ,it , , co . , i., ,, 0 ' 1.1.c .1 t',,,c, ,it 1

1= 5 ii'. t '.I i, '0% , C.'s 4.i , 1 : t;,IIs Iei.lt, , , 'I V 0 it t' I Ait IC I t1411O U s Csc'jt I i es

,y .oi I tw l t s iOlt,; I s i , I t-t '. \ (C) \ (I .. () I i

• i'll
con-ponLnt 5 ci X, it k,) rce. OL t cu..cr iitiniecL ivcs with the 1-.%ci.ve

kiiscases it tin t measlired fromI T.

Billard, Lacayo and Langborg 19791) (lBIL) considered a special case of

an m-dimensional simple opidemic ainid nametd it tile srlmetrie m-dimensional

simple epidemic. We say that a population of susceptibles .i.erlrOc.s a

symmetric m-dimensional simple epidemic if the trainsition rates of disease 1

- -- Sa Aj



through ii at time t, te[O .) rigorouslv defined in Scttot% 2. are res-

pectively given b):

( ) 1 Ix r L;\' a r  t ) r o )  " - .0,,).

The transition rates given by Lquat ion (I .,) retlect ja) that all inter-

actions l~etweel a slisceptible and an lnfective are "equa llv ikel" and

(b that not "t o' wany" inlfectives are added in short t iriv intervals; so

that the duration time of t ie epidem ic does not t end to zero as n . i'

note tnat the symmetr ic ni-dimens tona I siu l e epi,iemic generalizes the

sicple epidemic model used by ',cNeil 197%). in Section " we construct an

m-dimensional stochastic process that describes the progress of a symumetric

l-dimensional simple epidemic.

Let X(t) - U\ 1 t) (I,..., t) t ~) ,- te A VRand0M VectOr kry) With
I In

indelpendent compolients. iurtlther, let the random variable (rva) X \ (ti tave

a negative binomial distribution with parameters e and b ri 12,. for

r - 1 . . in and for t( (0,-). I, i 1979) assume that 11 is 1,,r-c

comparedr to each X io) , r I, in, it condit ion tormally given by
o t , r

(1.7) im ilX (0) b, r - I ... , m.

They prove that N i.r kt - r kki ) = k, r - 1, . , m) can be approximated

bry tr e-brt RI Irr for all te(O,'-) and State it formally as

fol Lows:

(1.8) 'ii, rye X -(t) converges in distribution as n-

('onv¢erls) to the rye X(t) for all It (0,,")
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Further, 13L (1979) prove that

(1.9) tne 6th iinent ot" X ,r(t) converges as n - ' to the

th mtoient of Xrt) for Ill t. 0 ti). ) and for

r I 1. ... , in.

Thus, in particular one can approxiniate tX,.r (t) and VariX nr t ) ) by
at 2at ati

b (C -1) and by (e 2at-e ) respect ively for r I , . . . , in and for t e (0.-)r r "

It is quite conceivable that the epidemic starts with it burst of infec -

tives with the different diseases. If this is the case Condition (1.7) does

not necessarily hold; consequently the approxinat ions discussed ill the pre-

vious paragraph are not appropriate. To accomodate thtis situation we assume,

in cunstrast to Condition (1 .7), that the number of infectives at T with0

the various diseases are proportional to n. For technical reasons we require

a bit more and assumne that for r = 1, ... , in

(1.10) 611 (1 \ (0)-X ), a 0, where Xl. Am tV,=)n,r O -r) l ,m.. .

We note that the univariate version of Condit ion l . 10) was assumed, at

least implicitly, by ,cNei I (1972) to obtain his as)miptot ic result . In Section

S we show that under Condition (1.10) the rye X (t), with the suitable stan-

dardization, converges to it multivariate normal 1,iN) rye for tt(0,-). One

can use this result to approxinuite the state probability

P(X n,r(t)-x n,r(O). r r-l, .I . m) for all t. (0,.) and all k , k tAOl .. .

Let X,(t) . I xtt), tti 0,-) * aLd let ,Ln), n = 1, 2, be a

sequences of integers in the set I .... nl for almost all n, n = 1, 2, .

,'let ,. 1 , u a .lSSIs V.iules ill tit'h

L - -l . ..
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set (1,... m} designating the disease responsible for the X (0) * I infection

* C.. Ct \' L L[u, t I t .* " Xli. i ,.t, " .Ct i..* I .,.cvt C Wc S ul~ I II.&Z

T4 r) ,r- ; ..... . iiv r- I .i . .... s,: L..) 1, VtjiidjrI' -

J*"I i,), rLO , ..i *-V' t AU i v1,...

-1L
(1.11) *tm n L(n) a zc(0,11.

WOM

One can use this result to approximate the probability of having sinul-

taneously X n,r(0) + kr infectives witli disease r, r = 1, ..., n when tne

total number of infectives: X n(0) + Ln) is "almost" equal to a propor-

tion of n.

In Sections 3 and 4 we present some lemmas needed in the proofs of

the two main results of Section S.

I



2. iodel Construction.

in this section we construct an m-dimensional stochastic process thzat

describes tile progress of tiie syliinetric m-dimensional simple epidemic anng

tLte susceptibles. .e need some notation.

Let r k - 1 . . he tile kh interinfection-time defined as tie

time that elpses between tile X (0) + k - 1 and the X (0) + k infection.

Let S =0, let S K k 1 I .... I', and let S xI,.) nk ki I ,q ' ,1+1

I'urt her, let I be the indicator function, aid let .1 k= 1,

r =I ... -* ie tihe index ;et of all infectives with disease r at the time

To Sn'k-l * inallv, let n. i,k' i = 1, ... , X 1(0) * k - 1, j = 1,

n - k + 1, k = 1, .... , i be i.i.d exponential rva's defined on some prob-
-1

ability space with a mean ciual to ,a 1

Throughout we assume that the rva's j Iijk describe the t ine measured

from the .X (0) + k - I infect ion, k = , . . . , n until the it h contagiousa

individual, i = I ... \ 1 (0) + k - I causes the j!h susceptible, i = 1, .

1 - k + 1 to becol, e tile kh infective.

1:c are ready now to construct the desired stochastic process. Let

k = 0, ... , i, let r = 1, .. , m, and let tilO3,-). Tnen the following event

equality holds.

(.1) x n,r(t)-X n,r(0) k) I (S n'kts nl,+ I ( .r )
q=k

Thus, to construct the iprocess .x (t) it suffices by Statement (..1) to deter-

mine the distribution function of the rye (T 1,,,.n . . ,n ,n}" "e
111 "1 11 '* n,n n

determine the distribution function of this rye in the following two leinmas.

Lema 2.1. Let r I, . m.. ,. Then



6

lr) -X (0) X (0), ana..2f '.. , n,r i

i

(xr (L)+l I(E =r)X (0)+k-11 1, k 2,nr q-1 n,q n

Proof. Let =I, ... , ;a. Then

(2.4) kr) = (mintni,j,k:itJk ,rj=l,..., n-kl1<

< min{ i,j,k ic U J k,e,jl,.. . ,n-k4l}).
e=l

Consequently Statein-i-s (2.2) and (2.3) follow by simple calculations.

Lmca 2.2. Tne' conditional :ve {T . hasn , I . . Tn,n} 'n,l' . ..in,n

exponential incepende::t components with means respectively equal to

n a- {n-q1)(Xn ,>) +q-1)1 -  q I 1,

'roof. Let k = 1, ... , n. Then

(2.1) Tn,,k = ..l.n. i,j ,k - :1 n-k+l

Consequently th, result of the lemma follows. J

Now, we .:hsw ,!,-it tI's stochastic process constructed in the previous

paragraph describes the i,:o-. o-; of a symmetric m-dimensional simple epidemic.

For the sako of cc-pleten,:.;5 w,, first, present a defin.* - n of the transi-

tion rates of the v-arious disea:.eN.

Definition 2.i. Lot r = 1, ... , w and let tc[O,-). Then the transition

rate of disease r at time t is given vy:

tin - P(X (t+h)-X n,r(t)=lX n(t)}.
hon, r



i) the memorviess property of exponential rva's Lbarlow, Proschan (1975),

p.50 and by Statements (2.1), (2.4)and (2.5) it follows that the transition

rates of the various diseases satisfy Equation (l.b).

Finally, for reference purposes we present the following lenm.

Lemma 2.4. ta) The rve's (i" " and ( - } are inde-pendnt an (b he, 1 n, ll indp ..d.nt,n
pendent, and (b) rhe rvaL's V I'l'' T Tinare independent.



3. Pre l ,iiijaries.

I It thi Is sei: t ion we est at, l Is II t fie isympt ot 1,C beh Id~ o~ur If s1 IC 1, ItI C

e.lvice I.) Iranlt ; vo o tors . it ii Olt 1;i tIt diSt ribUt ioIS. 1, later u.Se tills

rc -ult II SectIon >.

For The sak~e of Collipletveles hC kietIIuC te lit' r10ICh t .11k
1  tilt. 6.111111,1 :,

I Outinoll..

PC 1 11 nt lol N~ .1. Lot . . .. A .be ",)Iit I& V teal 11Lnibers * let 'O

* -x t0-1, ,V -
C A and let . x -, 0 r I . .. -- t r . . r= r " "

0

.e say that the rye (i, has a itrcl let distribution with pa ra-

"a r

tUnction equal to ( 1tr-j .ci x rr -) xr)
-l r=lr

tOefinlition :2. Let U be a posit lve nuunber. e say that tie rva V has

.i .Gr.Ma dist I-IMt ion% I h. paracter 0, anu I r ite ',A ;L) , i its densit v

function is eqdl to O'LO) 1e x It(o,.

"'ext, %e state without proofs thu simple propositions for reference

purposes.

Pr-s ition 3.3. Let d be a positive integer and let T\4(d). [hen V'

is equal in distribut ion to the sum of , independent 6(l) rva's

Proposition 3.4. Let a .. , ,i be posit ive real ntunbers let V rw;t, r

r - 1......' oe independent rva's , and let \ = - . [hen
r= I r1 ' ' \*l ri l , , V ka' I't, . a(

..e are ready now to state and prove the main result of ti section. I.e

need some notation. Let , i ,.. ..1. r = 1........t" be ( SequencesTII



of pos itive nt .egers conm ergm to.. . d let a A. .. .urt .er... . lo

tr, (k ) and let r-- - r , I' . . .. )

L.Llt i*,I  .. )n , ..

kurt.ier, let - - be a IVN rye nch that i - , I Y pr -1 ) '

- *x-l 1* 1*" 1." V

I lLet ous .I~.ret Iat

L3.A) t ; a -p)a ,, r kI a- , and that

l,3 . , I Il,1 - I I (1. i 0

It

a ll , t ( I L I

Pr, l Let ' I , I' 'Dor I_1 inu pendent

sequences of Iiepe]nt I ra', an- l et A a nr 3r, ,

}'roof. Let k titl), i =  I, ' . ... .r = , . . t 1"1in r d n

I t

Lack~i .d tfle I'VSI \ k[ ,, . .. ... Ct~ I So. tst S t i .i .d,. suni~u Js . 11,1,

o., tne noa II c ent r I 1 i i t t l rt. .c 'vr e , ) , p. .I t4 S t he sequences

L,. -A a 1 ,i .1
i , r I ..... converge to 0 , 1  rva s.

e no t e that tie ir as . - , .. ., .vc :;.. c;;,¢qt or I , .. ... .

and that

i.-\n,r- ) ,C 1 -a 1 r- 11 t,\1 1-1 i , r (a , .- 11
II nr Lailr ii nl 11, r 11, ran

t1 l',rn I r )td 1  r" n' 1,2......

onsequent ly by :Lnu It ion 1 tie rveiA -)a .. (A n-p a Ml-

verges to a normal rye of independent components with means -qual to " ano

variances equal to'r = 1, .. . , i respectively.

ow let el , .h.. * 1 - be real numbers such that 1 M) and let•~ .. r=. r~=+l -
g(x ,x = trr)iKr.r)r"

.xv Proposition 3.3 ' \ "A.
;

P
,...*= ,,o.rlrit n ,r 1.'r



r f ,** hence by Proposition 3.4 the rva s ti r n,r an ( n 1 ...,A n 4)

are equal in distribution for n =1, 2.. . Ye note that tike function g

has continous and nonvanishing first order part ial derivatives at tp1'...PA 4L

'rnus, by Condition (:5.2) r~ 0 1n conlvtrges to a

N(11-1i 2 Q ~i )2) rva I Rao (197 3) P). 387]1.
Lr=1 r r' r=1 ~r r r=l r r

Finally, tne convergence of B f 8V to a normal rva With tne para-r=l r n,r

meters specified above for all real numbers ti ... I , such that It r~it e- r~l
is equivalent to the result of tne theorem. filillingsley (19b8), 1p. 4!- .
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(43) i fi Lii ) ) }n-t I~:(.)

a Ild txold i t Iil (.1 . I) . II

Legitai~ 4 .2. t ! ;I% aSmile t 11.1t C l I t , 'l~I .ll 1 0) and .5.I 1 1wId. 141

It I- I

i(i

from Stat ement (..2) s t,.- v III (Ii -I z zsii

I.C1n110. 4 . .3 . Let %is a "stmpe t hat Colld I t i olls (I . I10i andI (.I . I1) lit, Id1. I'iCII

II -IIVI)V toaAoZ

l'roo f. 1,.vt V \A; (I I q -I li'.4e ;I setpu'nel Of intuic'prildent :v

Further. let I ia'InlnqI( L'+51) ( ) V I....(I%).

ii- I* 2 and leot c 1. (u) ow 1, (ui 1 111111 41 (-%1# 1) +41 (I)q.I

vs ' enitia 24(1 1 t lie rva s I'~* -S 1' ((11 al- 'I.( ): are

equial inl distribut ion for it % I iuc nt that

is~(1u '5 -as( )o 1,('n1.ft (1

fuu ,tol prove the rosuilt tt thle 4emma It skif ice's by~ Lcutlnw4 .Id.1 4..'. to

Shiow tha~t Lkll) I* Confverges to .4 Nk ) u va



Next , we show tt q1 l converj;es to a N(U,,a" ) rva. Let ct 1

and let ti (C) 11,Ln)T'2- n 1O t, = I , 2 Clearly, for all

E>0 h (c) n a LE{ (Vl-1)'1t(Vl-l! cc Ln) )), by ithe dominated convergence

theorem we have for all c>'0 that tCim hn(e) = 0 since, t'im c(I.L(n)) - ,'. Ihui.
(=I n,) converges to a N(0 ,t%- ) rva by t he normal centra1 limit theorem

LLobve (19b3), p. 2801. 11

Ile are readY) now to prove the n::ain result of this section.

Theorem 4.4. Let us assume that Condition (1.10) holds, and let tf (0.".,

l'then 1n (X (t) -Xn (0)) -i (t) ) " converges to a N(L) , t (t) ) rva,

Proof. Let vw(--,) and let 1431) j (vii -1/2 t))n , n 1, 2, .

',e observe that I'{ (n (X (t)-X n(U))-Vi(t))v¢n 7v =P{S -t I *

P{(S L(n)-f(u(t))/~ <O). Now we note that ,(n) satisfies Condition (4.1)

with z = (t)((,1). Thus, the conclusion of the theorem follows from

Lenuna 4.3. 11

Finally, we observe that (n- X (t)-vit)-A),'n =

n-(X n(t) -X (0))-i(t)),n -(Xn (0)-A) win for n , I , Thus, we obtain

lly Condition (1.10) and Theorem 4.4 the following.

Corollary 4.5. Let us assume that Condition (1.10) holds, and let

tc(0,o). 'Then n-I X (t)-vi(t)-Ox}rn converges to a :N(0,T (t)) rva

um-
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S. Main Results.

Let Yr = A , r = 1 .... , and let z be in the interval (0,1 J.

Iln this section we prove under Conditions (1.10) and (1.11) our main results.

First, we show tnat the rve (I,-1 (rL i)I ( =r)-Ir) t) ,r= , ... ,n onverge,

to a ,VN r'e. Next , we show tIat the re 1-x it) r ( t -Y r (t) Ar) Vii,r= ,11)

conver-es to a .lVN rye for .ll tt (0,-).

For the sake of completeness %e present tne following definition.

liefinit ion S . 1 . Let N ,| = , 2, b ,e a sequence of rva's 1;e say

tilat * q = 1I, 2 , ... 1a dii e e of rv's if for all posi-

t ive integers n and all permutations II of t he set 1 , . . . ,n) t he rye' s

0 fl(). . i 1 are cqual t i I:,t;'t, tot.

Let n b'e a positive integer. From Itquation (2.2) and the extension of

Equation (2.3) to all kt{2,S,...} we conclude that L * q = I, , ... , is

an exchangeable sequence of rva's. ius, by lieF inetti's theorem [Felcer

(19oi), p. 225.1 there is a rye 11{W n , (0 ) ... t)

such that

(S.1) The conditional sequence of rva's n , I , 2 o.l. . sts

of i.i.d. rva's, and that

CS 2 i t , I ) Ir 't i.. r(5.) l4=rlhI_, = I., r = I....m-].

To prove the first main result we need some notation and two lemmas.

Let * be the distrilbution function of a N(0,I) rva let It = v r' n,r |nr-r n

r - 1, ... r-i, it = 1, 2 ... ,and let 1, ... 1 i1 be real numibers.

Further let I(s) = 1 ( n s,r=1 ,.. . ,m-1) , s. (0, -) , let 0'(i"-

le n~~s 2 tm.-1l 2 lit -1 2 ,l 1 m- 2 .ral 2

r-1 OrW n,r"rr )l r i, a lot O l . - r=l Bryr- ral Or r)

',. ..- -J ,



Tiroughout we assiune that o 1 I.''.
r- r

Lemtia S... Let k()t{ , ... ,} , i 1 2, ... , te a sequLIC of rva'.

independent of " for n = I, I .v.. , et I ,w) = R ii I-(n-) - z %w)

and let B(Ii(n) ,x)=(x-it(n) - ' R - 0' 1 i , ,

xe (.-',) wth (0,-). Then for all real nIumbers s and w,

(5.3) t 11 Sup jil (w)l (s) l* I r=1 ij. =r)x -n , \ ... x .. , n r- -1 il 1,4

n- -xiR~),) j 0

Pro. Lt = -- 1r1 14 =r),* q = I ," ... Ily Statemenit U,.1}Proof . Let Itn , Ir~ r) 2 't te~~

and by the independence of K(n) and I' the cond itional rva's hIV' R(n)
-it 11'q -i1

S ... d. 3y Statement (S.2) and by the independence of

k(n) and 1 (111 1 ,R(n)) W r= r d Var(I n ,  , (n ))* 11,1 it r 1,R (n)11  - - - R(n)1
02 (13 1.. l,- i I , 2, ... . ic, note that Y=11,l1 1 r q n- r 1 ') ,,1

and that jit U (I 1 ' , R(n)) 211 , it = I, 2.. . .. s, b, the Berrv-and tha [n,l- nt,l - .. .

Lsseen bound [ Lo,3vc (11 3), p. 2881

(5.4) Stil I lit i- 1 6 Y (ui) 1( =r) x.'b 1\ () 1 (I(1n) .X)
4=l (qr=l I,(it'

s2cOR (1)on (Il, . t il ) whe re c is a positive constant.

Now, I I ,2()In,1 lr=1 r1q=w )nI I

[(I ,(w)I " (s)I E(I(1 113r IR(n) I n  =r)'x) JW,R(n).1) for n = I , ... s11. lItln,l SE~[r=l r,-,l 1  ,ig= , , ,

we (0,-) . Thus, to prove Statement (5.3) it sutffices by Inequality (5.A) to

show that for all s, wc(O, ')

(S.5) fim Ei, (w)K 1/ n1) 1 (s)0;(Il .. I) V 0.

Finally, we prove Statement (5.5). Let s, we (0,). We note that
02  L.. ~ l~ -1/2}_m-l I -l/s1  te e

.. .. r=l r r 1r=1 r (rSn '))2 onthe set



(iU nrI s,r=l,...,m-l1 and that tim {Irm-l 2( -I/2) -r-1,8 {YSn.I2  
2,

n--

O2(I2(i, .... ... 'm-l ) . Now for n sufficiently large

0 I n,2 (w)R-1/2 (n) 5 n-1/2 (z-n-1 2w)-1/2 and Inl s) 0 n3(al...,Sm 
) is

bounded from above. Consequently Statement (5.5) follows. 11

Lemma 5.3. Let Z = {Z1 ....Zm.1 I be a MVN rye such that

EZ = 0, EZ2 = Y (l-Yr), r , l.....n-l) and that EZ.Z. =-yiy., iyjc{l,....m-l}.r r r r 1) 1

Let us assume that Condition (1.10) holds. Then {Un, 1 ....U n,m.I converges to Z.

Proof. We note that (Xn (O)X (0)-y )/K(0) =n n,r r 11

= /nx- (0){(n' X (0)-A )Vn--y (n-1X (0)-X)Y -}, n = 1, 2, ... . Thus, byn n,r r r n

Condition (1.10) tim (Xnl(0)X (0)-y )vnX (0) = 0 for r = 1, ... , m. The
n-- YL n,r r ni

result of the lemma follows now from Theorem 3.5 since, Iri =.

We are ready now to prove our first main result.

Theorem 5.4. Let us assume that Condition (1.11) holds. Let {Z,.,.,ZmI

be a L4VN rye such that EZ = 0, EZr = (+z)y r(l-y ), r (1,...,m} and that

EZiZ. = -(l+z)yiyj, i ~j{l,...,m). Then the rye

{(L-I(n)L~ In), =r)-y )LQ-n),r-l....,m).converges to.Z.qnl 'n,q r
Proof. Let M L (n) r)y...,

nr q=l 11,q r
n2m- 2n", 2, ... , let M n - 1, 2, ..., let M^,N(O, (OV,...,sa

n rrl r n,r . ,1

Since, =I nr 0 to prove the result of the lemma it suffices to show

Ir-l n ,r z^
that {M n, 1 ... n,m I converges to (ZI,...Zm.I). Further, to prove the

preceeding statement it is enough to show that M4n converges to M for all real
m-I

numbers l,....,'m-l such that Irjllor1>0 [Billingsley (1968), p. 49). Next,

we show that Mn converges to M.

I n
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iie observe that ILl(A1 .x) - I 1 (s)I ( 2P{ I rs rml . ... m-1}

for n - 1, 2, .. and for st.(0,-). By Lemma S.3 f'in fim P, Il s,r-i ... m-l

0 . Thus. to snow that m converges to M1 it suffices to prove that for allii

(S.b) (in (im Ul s) I (Mu-x) = P(MNx)
nil

Next, we apply Lenuia 5.2 for a sequence R(n) , n = 1, , ... , of rva's

degenerate at L(n). Let wt-(t, ) then I ,(w) a I tor n sufficiently large.
11,-

Hence, we conclude from Statement LS.3) that ti1 (injlll (s) I(MnS:)-

- In,l Ls)l BH(L(n) ,e (x) 0 ). Thus , to prove Statement (S.o) it is enough

to show that for all xc(--.-)

(S.7) fim Cin El 1 (s)thitLkn') *e tx))) I{,Pt~x)

Now, we observe that IF;( l  s) -1)0t B OLn) ,e (x) 211P( 1In,rl s,r-l, ... ,m-I)

for n 1 , 2, .... and for s1'O,.). Thus, bIy Leimma S.3 to prove Statement

(5.7) it suffices to show that for all xtI-,,

(5.8) Cim E¢tB(L(n),e (x))) - l1(MSx}.

n-a-v

Finally, we prove Statement (S.8). Let Z be a N(O,1) rva independent

of W for n a 1, 2 ...... We note that L0;(L(n),e 1 (x))) - P{ZNB(L(I),e (X)} -

P{ZO (al .. t + 1 U )Ll(n 1/2 Le1p{Zn(1 Bi~l) mr=t~rn~)L/(nln-1/sx)". By Lemmat 5.3 '-= e if

n ' mn-I ~r-l r n,r rr. L r n

converges to a N(O,0 (a! ... $ iM-)) rva. By Lemma 5.3 and by the dominated

convergence theorem ZOn(a ..... . converges in probability to ZL 1 , .

Since, Z is independent of -16 for n = 1. 2, .... Statement (5.8) follows. H

Next, we prove our second main result. ie need the following lemma.

Lemma 5.5. Let t be a positive real number and let ni be a positive integer.



Then the conditional rve {X n,r(t)-X n,r(0),rul,...,mlI Xn(t) and the rye

x (tq-X l() n =),r=l .... I are equal in Ciscribtion.
1q-l ln,q="

Proof. Let kl, ..., km be nonnegative integers such that k u k r-lkr(0 ' 
.,n).

By Equation (2.1)

P(X n,r(t)-X n,r(O)=k ,rl,...,m,Xn (t)-X n(O)=k) a

=P(Sn,kt<Sn,k+l ,i=1 I( n,q=r)=k ,r=l,.,.,m}.

By Lemma 2.4(a)

P{S n<t<S - .k I(& =r)=kr,r=1,...,m}
nk n,kl' qui n,q

P{s .t<S )p( .I( =r)=k ,r=l,...,ml x
nn,k n.kl q=I n,q r

P(X (O)uk)P( k.I& rk
(t)Xn q=l n,q=rkr

Consequently the result of the lemma follows. [[

Theorem 5.6. Let us assume that Condition (1.10) holds, and let te(O,-).

Further, let Z(t) * (ZI(t),...,Z m(t)) be a MVN rye such that EZ r(t) - 0,

r rrEZr~t) * r24t)yr J4t)41 IA4t))yr l-r) r (l,...,m}, and that

EZi(t)Z (t) = { 2(t)-p(t)4l+jA(t)}yiyj, ixjc{l,...,m}. Then the rye

((n- IXn(t)-yf (t)-r )"nV,r=l,...,ml converges to Z(t).
n,r r r

Proof. Let v1, .. . v be real numbers such that l 1Vr>6 and let

e (x) a (xn-1 /2 +(t)I=iVrYr)n, n 1 1, 2, ... , xe(- ,w). Further, let

nyr(t)1 n 1, 2, ..., letAn~ ~~~ a 4T2Ctr)- 4t)Cl- (t))r)O)n- Y
Ah" (0 ,1r- z IV2 (y2 (t) P(t)rr(1+U t))Yr 4-Yr )+2 Vi i-j i ,  i 2

le n(t) = {((Xn nCO)'- j(t) } -, and let R(n) = (I/ n~t ()n

Finally, let B(R(n),x) be as in Lemma 5.2, and let In,5(w) - I(IVn(t)1Sw),

n a 1, 2, ... , wC(O,-).

By Lemma 2.4(a) the rye {9n,l,...,n,n) and the rva's X n(t), tc(O,-) are

independent for n 1., 2 .... Thus, X nt), tc(O,) and W n are independent

for n a 1, 2, ...



1')

We note that

n- IXn,r(t)- r r(t)- r)Vn (X1,r(0)-Xr)n + (n- (Xn,r t)-Xn,r(O))-yr (t))n ,

r u 1, ..., m. Thus, to prove the result of the theorem it suffices by

Condition (1.10) to show that the rye {(n (X (t)-X n,r(O))-yr p(t))/,r-1, ,m)

converges to Zit). To prove the preceeding statement it is enough to show

nnthat an converges to a for all real numnbers vl, ..'Vm such that m IV I>0o

LBillingsley (1968), p. 491. Since, by Theorem 4.4 A converges to A for

VI - 2 ... a v 0 it suffices to prove that A converges to A for V1 , ... V

-1rw roe trs to
M>0. 1et 

usdeot -. b
r = 1, ... , rn-i respectively. Next, we prove that A converges to A. Wie

n

assUMe throughout that 1r=1 r

We note that tEI(An sx)(1-1n,l(S)ln,3 (w)jsP{ iVn(t) I>wl+P( IUnr hsr-,... ,n-l1.

Thus, to prove that A converges to A it suffices by Theorem 4.4 and Lemma 5.3n

to show that for all xt(,-)

(5.9) fim EI(,Nn SX) I, 1 (s)In,3(w)-PAsx).

W-*wo

Next, we note that by Lemma 5.5 EI(An1.X)I 11 1 (S)In,3 (w)

nma V R(n)E(I n,l (S)I n,3a(w)E(I(A n Sx)J nR(n))}=EI 1,1 (S)In1,3(w)Ilr I r qul I(n,q rSn,l(X)).

Since, r1( n  r) - 1, q - 1, 2, ..., n a 1, 2, ..., we obtain that

El nl(s)In,3(w) I(AX)l (S) (w)( 18r 1( n,q'r) X)-VMR(n))

Thus, to prove Statement (5.9) it is enough to show by Lemma 5.2 that

(5.10) tim -tim Eln,(S)In,3 (w)(B(R(n) n, (x)-vmR(n))mP{Asx) "

Now, JE(Il (S)In,(w)-l)4l(( tn) ,en (X)-VR(n)}:SP( V [V (t) j>w} +
nKl n, n, mn

*PO n,r HS,r-i,...,m-I}. hence, to prove Statement (5.10) it suffices by
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rheorem 4.4 and Lemma 5.3 to show that

(5.11) tim E#{(k(R(),e (x)-v R(n)) -PiAsx}.

Finally, we prove Statement (5.11). Let Z be a N(0,1) rva independent

of Vn (t) and W n for n - 1, 2. ..... Now Lf{B(R(n),e n,l(X)-VmR(n))

SPiZB(R(n).e. (X)-V R n)-PP (o, .... $ )R 12/ 1n.1/2 .I-1 (n). M ,,,,U •
n~ 1 11 M -1' ru r n,r+

"( lYr)V (t)sx). By Lemma 5.3 and Theorem 4.4 n-1 R(n)r ll n converges*(r 1r r 11 r-l r ui,r

to a N(O,p (t)0 (alp .... $m~-1)) rva. By Lemma 5.3, by the dominated convergence

neorm. and ov '.t-r " 4 -,) (> 1.... ..s it probability t,N

(:1 , M. 81)"/(t). By Theorem 4.4 V (t) converges to a N(O,T (t)) rva.

Since, V (t) and Z are independent of W for n 1, 2 Statement (5.11)

follows. jI

, ~ . .. _ . . . ,
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